Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1327649, 2024.
Article in English | MEDLINE | ID: mdl-38645396

ABSTRACT

Arsenic (As) accumulation in plants is a global concern. Although the application of arbuscular mycorrhizal fungi (AMF) has been suggested as a potential solution to decrease As concentration in plants, there is currently a gap in a comprehensive, quantitative assessment of the abiotic and biotic factors influencing As accumulation. A meta-analysis was performed to quantitatively investigate the findings of 76 publications on the impacts of AMF, plant properties, and soil on As accumulation in plants. Results showed a significant dose-dependent As reduction with higher mycorrhizal infection rates, leading to a 19.3% decrease in As concentration. AMF reduced As(V) by 19.4% but increased dimethylarsenic acid (DMA) by 50.8%. AMF significantly decreased grain As concentration by 34.1%. AMF also improved plant P concentration and dry biomass by 33.0% and 62.0%, respectively. The most significant reducing effects of As on AMF properties were seen in single inoculation and experiments with intermediate durations. Additionally, the benefits of AMF were significantly enhanced when soil texture, soil organic carbon (SOC), pH level, Olsen-P, and DTPA-As were sandy soil, 0.8%-1.5%, ≥7.5, ≥9.1 mg/kg, and 30-60 mg/kg, respectively. AMF increased easily extractable glomalin-related soil protein (EE-GRSP) and total glomalin-related soil protein (T-GRSP) by 23.0% and 28.0%, respectively. Overall, the investigated factors had significant implications in developing AMF-based methods for alleviating the negative effects of As stress on plants.

2.
J Sci Food Agric ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38445779

ABSTRACT

BACKGROUND: Dietary selenium (Se) deficiency, stemming from low Se concentrations in agricultural products, threatens human health. While Se-containing fertilizers can enhance the Se content in crops, the key factors governing Se biofortification with Se fertilization remain unclear. RESULTS: This study constructed a global meta-analysis dataset based on field experiments comprising 364 entries on Se content in agricultural products and 271 entries on their yield. Random forest models and mixed effects meta-analyses revealed that plant types (i.e., cereals, vegetables, legumes, and forages) primarily influenced Se biofortification, with Se fertilization rates being the next significant factor. The random forest model, which included variables like plant types, Se fertilization rates, methods and types of Se application, initial soil conditions (including Se content, organic carbon content, and pH), soil types, mean annual precipitation, and temperature, explained 82.14% of the variation in Se content and 48.42% of the yield variation in agricultural products. For the same agricultural products, the increase in Se content decreased with higher rates of Se fertilization. The increase in Se content in their edible parts will be negligible for cereals, forages, legumes, and vegetable crops, when Se fertilization rates were 164, 103, 144, and 147 g Se ha-1 , respectively. Conversely, while low Se fertilization rates enhanced yields, high rates led to a yield reduction, particularly in cereals. CONCLUSION: Our findings highlight the need for balanced and precise Se fertilization strategies to optimize Se biofortification benefits and minimize the risk of yield reduction. © 2024 Society of Chemical Industry.

4.
Front Plant Sci ; 14: 1199721, 2023.
Article in English | MEDLINE | ID: mdl-37409302

ABSTRACT

Mercury (Hg) is a highly toxic heavy metal entering the human body through the food chain after absorption by plant. Exogenous selenium (Se) has been suggested as a potential solution to reduce Hg concentration in plants. However, the literature does not provide a consistent picture of the performance of Se on the accumulation of Hg in plant. To obtain a more conclusive answer on the interactions of Se and Hg, 1,193 data records were collected from 38 publications for this meta-analysis, and we tested the effects of different factors on Hg accumulation by meta-subgroup analysis and meta-regression model. The results highlighted a significant dose-dependent effect of Se/Hg molar ratio on the reduction of Hg concentration in plants, and the optimum condition for inhibiting Hg accumulation in plants is at a Se/Hg ratio of 1-3. Exogenous Se significantly reduced Hg concentrations in the overall plant species, rice grains, and non-rice species by 24.22%, 25.26%, and 28.04%, respectively. Both Se(IV) and Se(VI) significantly reduced Hg accumulation in plants, but Se(VI) had a stronger inhibiting effect than Se(IV). Se significantly decreased the BAFGrain in rice, which indicated that other physiological processes in rice may be involved in restricting uptake from soil to rice grain. Therefore, Se can effectively reduce Hg accumulation in rice grain, which provides a strategy for effectively alleviating the transfer of Hg to the human body through the food chain.

5.
Front Plant Sci ; 14: 1121605, 2023.
Article in English | MEDLINE | ID: mdl-37063195

ABSTRACT

Introduction: Low selenium (Se) concentrations in soils and plants pose a health risk for ruminants consuming locally-grown forages. Previous studies have shown that Se concentrations in forages can be increased using soil-applied selenate amendments. However, the effects of foliar selenate amendments applied with traditional nitrogen-phosphorus-potassium-sulfur (NPKS) fertilizers on forage yields, and nutrient contents, and agronomic efficiencies are unknown. Methods: Using a split plot design, we determined the effects of springtime sodium selenate foliar amendment rates (0, 45, and 90 g Se ha-1) and NPKS application (none, NPK for grasses/PK for alfalfa, and NPKS/PKS fertilization at amounts adapted to meet local forage and soil requirements) on forage growth and N, S, and Se concentrations, yields, and agronomic efficiencies. This 2-year study was conducted across Oregon on four representative forage fields: orchardgrass (Dactylis glomerata L.) in Terrebonne (central Oregon), grass-clover mixture in Roseburg (southwestern Oregon), and both grass mixture and alfalfa (Medicago sativa L.) fields in Union (eastern Oregon). Results: Grasses grew poorly and were low in N content without NPK fertilization. Fertilization with NPK/PK promoted forage growth, increased forage N concentrations, and had to be co-applied with S when plant available S was low. Without Se amendment, forage Se concentrations were low and further decreased with NPKS/PKS fertilization. Selenate amendment linearly increased forage Se concentration without adversely affecting forage yields, N and S concentrations, or N and S agronomic efficiencies. Discussion: Importantly, S fertilization did not interfere with Se uptake in Se amended plots. In conclusion, co-application of NPKS/PKS fertilizers and foliar sodium selenate in springtime is an effective strategy to increase forage total Se concentrations, while maintaining optimal growth and quality of Oregon forages.

6.
Article in English | MEDLINE | ID: mdl-36900888

ABSTRACT

Constructed wetlands (CWs) are an eco-technology for wastewater treatment and are applied worldwide. Due to the regular influx of pollutants, CWs can release considerable quantities of greenhouse gases (GHGs), ammonia (NH3), and other atmospheric pollutants, such as volatile organic compounds (VOCs) and hydrogen sulfide (H2S), etc., which will aggravate global warming, degrade air quality and even threaten human health. However, there is a lack of systematic understanding of factors affecting the emission of these gases in CWs. In this study, we applied meta-analysis to quantitatively review the main influencing factors of GHG emission from CWs; meanwhile, the emissions of NH3, VOCs, and H2S were qualitatively assessed. Meta-analysis indicates that horizontal subsurface flow (HSSF) CWs emit less CH4 and N2O than free water surface flow (FWS) CWs. The addition of biochar can mitigate N2O emission compared to gravel-based CWs but has the risk of increasing CH4 emission. Polyculture CWs stimulate CH4 emission but pose no influence on N2O emission compared to monoculture CWs. The influent wastewater characteristics (e.g., C/N ratio, salinity) and environmental conditions (e.g., temperature) can also impact GHG emission. The NH3 volatilization from CWs is positively related to the influent nitrogen concentration and pH value. High plant species richness tends to reduce NH3 volatilization and plant composition showed greater effects than species richness. Though VOCs and H2S emissions from CWs do not always occur, it should be a concern when using CWs to treat wastewater containing hydrocarbon and acid. This study provides solid references for simultaneously achieving pollutant removal and reducing gaseous emission from CWs, which avoids the transformation of water pollution into air contamination.


Subject(s)
Gases , Greenhouse Gases , Humans , Gases/analysis , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Wastewater , Wetlands
7.
Foods ; 12(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36981141

ABSTRACT

Since soybean is widely cultivated around the world and has a high protein content, it is a great nutritional vehicle for increasing the dietary uptake of selenium (Se). Several studies have evaluated biofortification with Se through fertilizer application in several crops. However, it is not clear how each method and source affect the total Se content or Se species in soybean grains. This work aimed to assess the total Se content and Se speciation in Se-enriched soybean grains produced under different Se application methods in the field. The treatments consisted of Se application (soil or foliar), using organic or inorganic Se sources at 10 g ha-1 or 80 g ha-1, in two genotypes. The results showed that all treatments with inorganic Se (soil and foliar) increased the Se content in grains compared with the control. More than 80% of the total Se in grains was present as selenomethionine (SeMet), and the speciation was affected by the Se source and the method of application. The treatments using inorganic Se, applied via soil or foliar, produced the highest content of Se as SeMet in soybean grains. Finally, we propose that the preservation of the Se species in products derived from soybean grains be evaluated as the following step.

8.
Biol Trace Elem Res ; 201(10): 4951-4960, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36600168

ABSTRACT

Selenium (Se) agronomic biofortification of plants is effective for alleviating Se deficiencies in human and livestock populations. Less is known about how higher selenate amendment rates, or how foliar compared with granular selenate amendments affect forage Se concentrations. Therefore, we compared the effects of a higher sodium selenate foliar amendment rate (900 vs. 90 g Se ha-1), and two selenate amendment methods (liquid foliar sodium selenate vs. granular slow-release Selcote Ultra® at 0, 45, and 90 g Se ha-1) on Se concentrations and Se species in forages across Oregon. The 10 × amendment rate (900 g Se ha-1) resulted in 6.4 × higher forage Se concentrations in the first cut (49.19 vs. 7.61 mg Se kg-1 plant DM, respectively) compared with the 90 g ha-1 amendment rate, indicating that forages can tolerate higher selenate amendment rates. Most Se was incorporated as SeMet (75%) in the harvested portion of the forage (37 mg Se kg-1 forage DM of the first cut) and only a limited amount was stored in the selenate reserve pool in the leaves (~ 5 mg Se kg-1 forage DM). Higher application rates of selenate amendment increased forage Se concentrations in first and second cuts, but carry over in subsequent years was negligible. Application of foliar selenate vs. granular Selcote Ultra® amendments, between 0 and 90 g Se ha-1, both resulted in a linear, dose-dependent increase in forage Se concentration. Amendments differed in their Se incorporation pattern (Se%), in that, first cut forage Se concentrations were higher with foliar selenate amendment and second, third, and residual (following spring) cut forage Se concentrations were higher with granular Selcote Ultra® amendment. Given the linear relationship between forage Se concentrations and whole-blood Se concentrations in livestock consuming Se-biofortified forage, we conclude that targeted grazing or other forage feeding strategies will allow producers to adapt to either selenate-amendment form.


Subject(s)
Selenium , Humans , Selenium/metabolism , Selenic Acid , Biofortification/methods , Agriculture
9.
Front Plant Sci ; 13: 996502, 2022.
Article in English | MEDLINE | ID: mdl-36226288

ABSTRACT

In California, there is a shortage of good quality water available for irrigated agriculture due to severe drought. Consequently, saline groundwaters and drainage waters containing natural-occurring selenium (Se) and boron (B) salts are being considered as alternative sources of water for irrigation on salt and B tolerant crops like the edible halophyte-agretti (Salsola soda L.). In this multi-year field study, we evaluated agretti grown as a Se-biofortification crop in typical saline/B-laden soils (10 dS m-1 and 12 mg B/L) and irrigated with saline (3-8 dS m-1) and low-saline water (<1 d/S m) containing B (3-6 mg B/L) and Se (0.02-0.25 mg Se/L) at different evaporation transpiration (Et o ) rates (100, 75, and 50 %, respectively). During the four-year study, fresh biomass yields ranged from 1 to 3 kg/m2 and were generally highest with irrigation at 100 % Et o with either saline or low-saline water. Tissue Se concentrations ranged from 2 to 3.2 mg Se / kg DW and 0.4-0.5 mg Se/kg DW with saline and low-saline irrigation, respectively. Selenium speciation in plant tissue showed the following: selenomethionine (SeMet) > selenate (SeO4) > methylselenocysteine (MeSeCy s ), irrespective of any treatment (i.e., year of planting, saline or low saline irrigation, rate of water application, direct seeding or transplanted). Agretti did not exhibit any toxicity symptoms as indicated by changes in total phenolic concentrations. Total phenolics ranged from 180 to 257 GAE/L and showed no significant differences among all treatments, although they were generally higher at the lowest water treatment (50% Et o ). In regard to toxic ion accumulation, agretti tolerated excessive sodium (Na) and boron (B) and tissue concentrations ranging from 5.5 to 8.8% Na and 60 to 235 mg B/kg DW, respectively. Results from this multi-year study have identified a unique Se-biofortification strategy for producing Se-enriched agretti using saline, B- and Se-laden soil and irrigating with saline and low-saline water, respectively. Successful production of this crop may promote Se- biofortification strategies in poor quality regions where natural- occurring Se is present in soils and in waters used for irrigation.

10.
Front Plant Sci ; 13: 988627, 2022.
Article in English | MEDLINE | ID: mdl-36186067

ABSTRACT

A comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg-1 increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments. Foliar and soil Se application of either selenate or selenite significantly increased the Se content in different parts of wheat, while selenate had higher bioavailability than selenite in the soil. Regardless of Se application methods, the Se content of the first node was always higher than the first internode. Selenomethionine (SeMet; 87-96%) and selenocystine (SeCys2; 4-13%) were the main Se species identified in grains of wheat. The percentage of SeMet increased by 6% in soil with applied selenite and selenate treatments at 0.5 mg kg-1 and decreased by 12% compared with soil applied selenite and selenate at 2 mg kg-1, respectively. In addition, flour processing resulted in losses of Se; the losses were 12-68% in white all-purpose flour compared with whole wheat flour. The Se bioaccessibility in whole wheat and white all-purpose flours for all Se treatments ranged from 6 to 38%. In summary, foliar application of 5 mg L-1 Se(IV) produced wheat grains that when grounds into whole wheat flour, was the most efficient strategy in producing Se-biofortified wheat. This study provides an important reference for the future development of high-quality and efficient Se-enriched wheat and wheat flour processing.

11.
Front Plant Sci ; 13: 903936, 2022.
Article in English | MEDLINE | ID: mdl-35812947

ABSTRACT

Melatonin (MT) is a ubiquitous hormone molecule that is commonly distributed in nature. MT not only plays an important role in animals and humans but also has extensive functions in plants. Selenium (Se) is an essential micronutrient for animals and humans, and is a beneficial element in higher plants at low concentrations. Postharvest diseases caused by fungal pathogens lead to huge economic losses worldwide. In this study, tomato fruits were treated with an optimal sodium selenite (20 mg/L) and melatonin (10 µmol/L) 2 h and were stored for 7 days at room temperature simulating shelf life, and the synergistic effects of Se and MT collectively called Se-Mel on gray mold decay in tomato fruits by Botrytis cinerea was investigated. MT did not have antifungal activity against B. cinerea in vitro, while Se significantly inhibited gray mold development caused by B. cinerea in tomatoes. However, the interaction of MT and Se showed significant inhibition of the spread and growth of the disease, showing the highest control effect of 74.05%. The combination of MT with Se treatment enhanced the disease resistance of fruits by improving the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as increasing the gene expression level of pathogenesis-related (PR) proteins. Altogether, our results indicate that the combination of MT and Se would induce the activation of antioxidant enzymes and increase the expression of PR proteins genes that might directly enhance the resistance in tomato fruit against postharvest pathogenic fungus B. cinerea.

12.
Sci Total Environ ; 838(Pt 1): 155967, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35588843

ABSTRACT

Arsenic (As) is a pollutant with a strong toxic effect on animals, plants and human beings. Exogenous selenium (Se) has been suggested to reduce the accumulation of As in crops, but contradictory results were found in the published literature. In order to clarify the possible processes, we collected the literature that reports on the effects of Se application on As uptake and accumulation in crops, analyzed the data by meta-analysis, and tested the effects of different factors on As accumulation by meta-regression model and subgroup analysis. The results highlighted a significant dose-dependent reduction of As content in crops after Se addition. Exogenous Se can significantly reduce As concentrations in grains by 18.76%. The reduction was dose-dependent for rice grains under aerobic soil conditions but not for rice grains under anoxic soil conditions. Se-enriched soils (greater than 0.5 mg kg-1) significantly reduced As concentrations in grains. Selenium significantly decreased the transfer factor of As from root to shoot. Moreover, selenite had a stronger inhibiting effect on the transport of As from root to shoot than selenate. The inhibition of selenium fertilization on As concentrations seems to take place in root and soil, while physiological processes in rice may be involved in restricting uptake and transport from root to shoot. These findings provide new ideas for effectively alleviating the transfer of As to the human body through the food chain.


Subject(s)
Arsenic , Oryza , Selenium , Animals , Arsenic/pharmacology , Crops, Agricultural , Fertilization , Selenic Acid , Selenium/pharmacology , Soil
13.
Sci Total Environ ; 806(Pt 1): 150220, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34560453

ABSTRACT

Using microbial fuel cells with constructed wetlands (MFC-CWs) for eliminating antibiotics has recently attracted extensive attention. However, antibiotic removal efficiencies in MFC-CWs must be enhanced, and the accumulation of antibiotic resistant genes (ARGs) remains an unmanageable issue. This study tries to enhance the antibiotic removal in synthetic wastewater and reduce ARGs by adding sponge iron (s-Fe0) and calcium peroxide to the anode and cathode of MFC-CWs, respectively, and/or simultaneously. The results demonstrated that adding s-Fe0 and calcium peroxide to MFC-CWs could improve the removal efficiencies of sulfamethoxazole (SMX) and tetracycline (TC) by 0.8-1.3% and 6.0-8.7%. Therein, s-Fe0 also significantly reduced 84.10-94.11% and 49.61-60.63% of total sul and tet genes, respectively. Furthermore, s-Fe0 improved the voltage output, power density, columbic efficiency, and reduced the internal resistance of reactors. The intensification to the electrode layers posed a significant effect on the microbial community composition and functions, which motivated the shift of antibiotic removal, accumulation of ARGs and bioelectricity generation in MFC-CWs. Given the overall performance of MFC-CWs, adding s-Fe0 to the anode region of MFC-CWs was found to be an effective strategy for removing antibiotics and reducing the accumulation of ARGs.


Subject(s)
Bioelectric Energy Sources , Wetlands , Anti-Bacterial Agents , Electrodes , Iron , Wastewater/analysis
14.
Environ Sci Pollut Res Int ; 28(34): 46852-46876, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34254235

ABSTRACT

Feasible countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently needed worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce Hg concentrations, promote agro-environmental sustainability and food safety, and decrease the public health risk posed by Hg-contaminated soils and its accumulation in food crops. This holistic review focuses on the processes and detoxification mechanisms of Hg in whole soil-plant systems after Se application. The reduction of Hg bioavailability in soil, the formation of inert HgSe or/and HgSe-containing proteinaceous complexes in the rhizosphere and/or roots, and the reduction of plant root uptake and translocation of Hg in plant after Se application are systemically discussed. In addition, the positive responses in plant physiological and biochemical processes to Se application under Hg stress are presented to show the possible mechanisms for protecting the plant. However, application of high levels Se showed synergistic toxic effect with Hg and inhibited plant growth. The effectiveness of Se application methods, rates, and species on Hg detoxification is compared. This review provides a good approach for plant production in Hg-contaminated areas to meet food security demands and reduce the public health risk.


Subject(s)
Mercury , Selenium , Soil Pollutants , Rhizosphere , Soil , Soil Pollutants/analysis
15.
Environ Pollut ; 287: 117592, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34171725

ABSTRACT

Constructed wetlands (CWs) inoculated with exogenous microbes have great potential for removing pollutants in adverse environments. The rapid loss of functional bacteria and the high cost of repeated additions of inoculum, however, limit the practical application of this technology. In this study, C-F2 immobilized bacteria (i.e., immobilized salt-tolerant bacterium Alishewanella sp. F2 incorporated with a carbon source) were developed and utilized in CWs for solving the above problems. A 60-day experiment demonstrated that bioaugmented CWs (Bio-CWs) with the addition of C-F2 immobilized bacteria into the bottom gravel layer of CW microcosms (B-CF2 treatment) exhibited high nitrogen removal efficiency under a saline condition (electrical conductivity of 15 mS/cm). We measured mean nitrate nitrogen (NO3--N) and total nitrogen (TN) removal percentages of 97.8% and 88.1%, respectively, which were significantly (p < 0.05) higher than those in Bio-CWs with microbial inoculum (MI-F2 treatment, 63.5% and 78.2%) and unbioaugmented CWs (CK, 48.7% and 67.2%). The TN content of the entire plant was significantly (p < 0.05) increased in B-CF2 (636.06 mg/microcosm) compared with CK (372.06 mg/microcosm). The relative abundances of the genera Alishewanella (i.e., the exogenous bacterium, 5.5%), Clostridium-XlVa (8.8%) and Bacteroides (21.1%) in B-CF2 were significantly (p < 0.05) higher than in MI-F2 and CK, which improved the denitrification capacity of CWs. Overall, a high denitrification efficiency and durability were achieved in the newly developed Bio-CWs (i.e., B-CF2 treatment) with immobilized bacteria under saline conditions, which provides an alternative technology for the rapid removal of nitrogen from saline wastewater.


Subject(s)
Denitrification , Wetlands , Bacteria , Nitrogen , Waste Disposal, Fluid , Wastewater
16.
Sci Total Environ ; 777: 145956, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33676222

ABSTRACT

Chlorpyrifos (CP) is a typical organophosphorus insecticide, which poses serious threats to the natural environment and human health. Strategies for the fast elimination of CP and its toxic hydrolytic metabolite 3,5,6-trichloro-2(1H)-pyridianol (TCP) in drainage water are urgently needed. The fate of CP and TCP in microcosm-scale subsurface batch constructed wetlands (SSBCWs) was quantified with different macrophyte species under soda saline-alkaline (SSA) condition and effective intensification strategies were developed. The macrophyte species Canna indica outperformed Phragmites australis and Typha orientalis for CP and TCP removal in SSBCWs. Mass balance calculation indicates the fate of CP in SSBCWs was residue in water (≤8%), alkaline hydrolysis (18.93-57.42%), microbial degradation (37.75-61.91%), substrate adsorption (~4-14%), and macrophyte uptake (≤3%). The addition of ferric-carbon (Fe-C) as a substrate amendment in SSBCWs increased the CP removal percentage by 35% and reduced the effluent TCP concentration by ~70% during Day 1-4 on average compared with the unintensified control. Fe-C addition simplified the microbial community diversity, while increasing the relative abundance of Proteobacteria which tolerates the microelectrolytic environment. A single application of liquid microbial agent improved CP removal percentage by 84% and decreased the effluent TCP concentration by two orders of magnitude during Day 1-4. The hydraulic retention time for thorough removal of TCP reduced from over 8 d to 4 d. Although only two dominant microbial genera (i.e., Sphingomonas and Pseudomonas) adapted to the environment with CP and SSA, they accelerated CP and TCP degradation via their own metabolism and co-metabolism with other indigenous microorganisms.

17.
Environ Sci Pollut Res Int ; 28(14): 18089-18101, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33405146

ABSTRACT

Nitrogen removal in constructed wetlands (CWs) may be inhibited by salinity. The clarification of the response of microbial community to salt stress is a premise for developing strategies to improve nitrogen removal efficiency in CWs under saline conditions. Results showed that the ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total nitrogen (TN) removal percentages significantly (p < 0.05) decreased in CWs with increasing salinity. The structure and abundance of the microbial community varied with different salinity levels and sampling depths in CWs. Compared with a non-saline condition, the abundances of some bacteria with a denitrification function (e.g., Arthrobacter) significantly (p < 0.05) decreased in CWs under saline conditions (i.e., EC of 15 and 30 mS/cm). Aerobic bacteria (e.g., Sphingomonas) exhibited more abundance in soil and upper gravel samples in CWs than those in bottom gravel samples, while the abundance of some denitrifying bacteria (e.g., Thauera and Azoarcus) was significantly (p < 0.05) higher in bottom gravel samples compared with soil and upper gravel samples, respectively. This study provides both microbiological evidence for explaining the impact of salt stress on nitrogen removal in CWs and scientific reference for developing enhanced strategies to improve the nitrogen removal capacity of CWs.


Subject(s)
Microbiota , Wetlands , Denitrification , Nitrogen , Salt Stress , Waste Disposal, Fluid
18.
Ecotoxicol Environ Saf ; 207: 111544, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33254403

ABSTRACT

Selenium (Se)-enriched wheat can be improved by altering Se sources and selecting wheat cultivars. Such improvement can affect subcellular distribution and speciation of Se in wheat. Thus, a pot experiment was conducted to investigate Se uptake and distribution when Se was applied as selenite or selenate at low and high rates (1 and 10 mg kg-1, respectively). Moreover, Se's impact on the grain and biomass yield of eight wheat cultivars was also investigated. The subcellular distribution and speciation of Se were also explored to elucidate Se metabolism and micro-distribution pattern in wheat. Results showed that biomass and grain yield were decreased with the application of both selenite and selenate in almost all the cultivars, regardless of the Se rate. Application high Se rate resulted in a significant (p < 0.05) decrease in grain yield and biomass compared with low rate of Se. Compared with the low rate of selenite application, the grain and the biomass yield of ZM-9023 significantly (p < 0.05) increased by about 15% for low rate of selenate application. In addition, both selenite and selenate treatment increased the uptake of Se in each part of wheat, compared with the control. Selenium was mostly accumulated in the grain and root of wheat under selenite treatment, while more Se accumulation was found in leaves and straw for selenate application. Further investigation on the subcellular distribution of Se showed that the proportion of Se in soluble fraction was significantly (p < 0.05) higher in wheat leaves than that in organelle fraction and cell walls (46%-66%). Meanwhile, Se6+ was the main species found in soluble fraction, whereas SeMet and MeSeCys were the species predominantly stored in organelle fraction. In conclusion, wheat cultivar ZM-9023 is the most Se-rich potential cultivar, and the isolation of Se in the soluble fraction plays an important role in Se tolerance and accumulation.


Subject(s)
Selenium/metabolism , Soil Pollutants/metabolism , Triticum/metabolism , Antioxidants/metabolism , Biological Transport , Biomass , Edible Grain/metabolism , Plant Leaves/metabolism , Selenic Acid/metabolism , Selenious Acid/metabolism , Selenium Compounds/metabolism
19.
Environ Pollut ; 272: 115988, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33218779

ABSTRACT

Constructed wetlands integrated with microbial fuel cells (MFC-CWs) have been recently developed and tested for removing antibiotics. However, the effects of carbon source availability, electron transfer flux and cathode conditions on antibiotics removal in MFC-CWs through co-metabolism remained unclear. In this study, four experiments were conducted in MFC-CW microcosms to investigate the influence of carbon source species and concentrations, external resistance and aeration duration on sulfamethoxazole (SMX) and tetracycline (TC) removal and bioelectricity generation performance. MFC-CWs supplied with glucose as carbon source outperformed other carbon sources, and moderate influent glucose concentration (200 mg L-1) resulted in the best removal of both SMX and TC. Highest removal percentages of SMX (99.4%) and TC (97.8%) were obtained in MFC-CWs with the external resistance of 700 Ω compared to other external resistance treatments. SMX and TC removal percentages in MFC-CWs were improved by 4.98% and 4.34%, respectively, by increasing the aeration duration to 12 h compared to no aeration. For bioelectricity generation performance, glucose outperformed sodium acetate, sucrose and starch, with the highest voltages of 386 ± 20 mV, maximum power density (MPD) of 123.43 mW m-3, and coulombic efficiency (CE) of 0.273%. Increasing carbon source concentrations from 100 to 400 mg L-1, significantly (p < 0.05) increased the voltage and MPD, but decreased the internal resistance and CE. The highest MPD was obtained when the external resistance (700 Ω) was close to the internal resistance (600.11 Ω). Aeration not only improved the voltage and MPD, but also reduced the internal resistance. This study demonstrates that carbon source species and concentrations, external resistances and aeration duration, all play vital roles in regulating SMX and TC removal in MFC-CWs.


Subject(s)
Bioelectric Energy Sources , Anti-Bacterial Agents , Electrodes , Sulfamethoxazole , Wastewater , Wetlands
20.
Environ Int ; 146: 106189, 2021 01.
Article in English | MEDLINE | ID: mdl-33130370

ABSTRACT

Maritime Antarctica harbors a large number of penguins and seals that provide considerable input of selenium (Se) originating as guano into terrestrial ecosystems. Subsequent Se emissions via biomethylation and volatilization from these sources of Se have not been studied. Here, penguin colony soils (PCS) and adjacent tundra marsh soils (TMS), seal colony soils (SCS) and adjacent tundra soils (STS), and normal upland tundra soils (NTS) were collected in maritime Antarctica. For the first time, Se volatilization and speciation were investigated in these soils through incubation experiments using chemo-trapping method. The Se contents in PCS, SCS, STS and TMS were highly enriched compared with NTS, with organic matter-bound Se accounting for 70%-80%. Laboratory incubations yielded the greatest Se volatilization rates (VRSe) in PCS (0.20 ± 0.01 µg kg-1 d-1), followed by SCS (0.14 ± 0.01 µg kg-1 d-1) at low temperature (4 °C). Soil frozen-thawing induced 1-4 fold increase in VRSe, and the VRSe continuously increased until the soils fully thawed. The VRSe showed a significant positive correlation (R2 = 0.96, p < 0.01) with soil temperature. Methylated Se species were dominated by dimethylselenide (DMSe) in PCS and dimethyldiselenide (DMDSe) in SCS. Our results imply that the combination of climate warming, frozen-thawing processes, and high-Se inputs from sea animals will significantly increase tundra soil Se volatilization in maritime Antarctica. High VRSe from penguin colony soils, and significantly elevated Se levels in the mosses close to penguin colony, suggest that volatilization of Se from penguin colony soils play an important role in the mobilization and regional biogeochemical cycling of Se in maritime Antarctica.


Subject(s)
Selenium , Soil , Animals , Antarctic Regions , Ecosystem , Tundra , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...